Search results for "interaction [cosmic radiation]"

showing 10 items of 416 documents

Structure and vulnerability of the multi‐interaction network in macrophyte‐dominated lakes

2019

The network approach is crucial to understand how ecosystems are structured and how they will respond to the disturbances (e.g. the current global change). We have recreated the multi‐interaction network of a shallow freshwater lake dominated by submerged macrophytes (Charophytes), a known system very vulnerable to environmental changes, considering both trophic and non‐trophic relationships among its elements. To minimize the environmental variability, we established it in an experimental mesocosm, including three habitats: the pelagic, the habitat around the meadow and the periphytic community living on macrophytes. We aimed to study the structure of this network and the roles of its elem…

0106 biological sciencesEcology010604 marine biology & hydrobiology010603 evolutionary biology01 natural sciencesEcological networkMacrophyteHabitatInteraction networkAbundance (ecology)Foundation speciesEnvironmental scienceEcosystemEcology Evolution Behavior and SystematicsTrophic levelOikos
researchProduct

A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds ⁎ ⁎This work was supported by CONICYT-PFCHA/2017-21170472, and AC3E CONICYT-…

2018

Abstract Fluid-structure interaction models are of special interest for studying the energy transfer between the moving fluid and the mechanical structure in contact. The vocal folds are an example of a fluid-structure system, where the mechanical structure is usually modeled as a mass-spring-damper system. In particular, the estimation of the collision forces of the vocal folds is of high interest in the diagnosis of phonotraumatic voice pathologies. In this context, the port-Hamiltonian modeling framework focuses on the energy flux in the model and the interacting forces. In this paper, we develop a port-Hamiltonian fluid-structure interaction model based on the interconnection methodolog…

0209 industrial biotechnologyInterconnectionComputer scienceEnergy transferEnergy fluxInteraction model02 engineering and technologyCollision01 natural sciencessymbols.namesake020901 industrial engineering & automationmedicine.anatomical_structureClassical mechanicsControl and Systems EngineeringVocal folds0103 physical sciencesFluid–structure interactionsymbolsmedicineHamiltonian (quantum mechanics)010301 acousticsIFAC-PapersOnLine
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Integrative analysis of key candidate genes and signaling pathways in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy by bioinformatics

2020

Summary Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), the first immune checkpoint to be targeted clinically, has provided an effective treatment option for various malignancies. However, the clinical advantages associated with CTLA-4 inhibitors can be offset by the potentially severe immune-related adverse events (IRAEs), including autoimmune thyroid dysfunction. To investigate the candidate genes and signaling pathways involving in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy, integrated differentially expressed genes (DEGs) were extracted from the intersection of genes from Gene Expression Omnibus (GEO) datasets and text mining. The functional enrichment was perfo…

0301 basic medicineCandidate geneCD74Signaling pathway.FCGR2BDifferentially expressed geneBiologyBioinformaticsHyperthyroidismAutoimmune Diseases03 medical and health sciencesMice0302 clinical medicineHypothyroidismmedicineAnimalsHumansPharmacology (medical)CTLA-4 AntigenProtein Interaction MapsKEGGGeneImmune Checkpoint InhibitorsPharmacologyPreclinical StudiesSignaling pathwayCancerComputational Biologymedicine.diseaseImmune checkpointGene Expression Regulation Neoplastic030104 developmental biologyGene OntologyAutoimmune thyroid dysfunctionOncologyCTLA-4030220 oncology & carcinogenesisDifferentially expressed genesCTLA-4BiomarkersImmune checkpoint blockadeSignal Transduction
researchProduct

Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.

2017

Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated …

0301 basic medicineCell signalingHistologySaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeAmino Acid MotifsSaccharomyces cerevisiaeInteractomeReceptor tyrosine kinaseArticlePathology and Forensic Medicine03 medical and health scienceschemistry.chemical_compoundHumansProtein Interaction MapsPhosphorylationbiologyTyrosine phosphorylationCell BiologyProtein-Tyrosine Kinasesbiology.organism_classificationYeastCell biology030104 developmental biologychemistrybiology.proteinPhosphorylationTyrosine kinaseSequence AlignmentCell systems
researchProduct

Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling.

2018

The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A po…

0301 basic medicineCell signalingImmunologyIntegrinNeovascularization PhysiologicFactor VIIa030204 cardiovascular system & hematologyBiochemistryThromboplastinThrombosis and Hemostasis03 medical and health sciencesTissue factorMice0302 clinical medicineAnimalsHumansReceptor PAR-2Protein Interaction Domains and MotifsProtein Interaction MapsProtein kinase ACells CulturedIntegrin bindingBinding SitesbiologyChemistryIntegrin beta1Cell BiologyHematologyCell biologyCrosstalk (biology)030104 developmental biologyADP-Ribosylation Factor 6biology.proteinNIH 3T3 CellsPhosphorylationSignal transductionProtein BindingSignal TransductionBlood
researchProduct

COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection

2020

AbstractBackgroundEpidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information.MethodsWe investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-hos…

0301 basic medicineChemokinevirusesPneumonia ViralGene regulatory networklcsh:MedicineComputational biologyVirus-host interactomemedicine.disease_causeModels BiologicalInteractomeGeneral Biochemistry Genetics and Molecular BiologyTranscriptomePathogenesis03 medical and health sciencesBetacoronavirus0302 clinical medicineViral Envelope ProteinsProtein Interaction MappingmedicineCoronavirus infectionHumansGene Regulatory NetworksPandemicsGeneCoronavirusVirus–host interactomeMembrane GlycoproteinsInnate immune systembiologySARS-CoV-2Researchlcsh:RCOVID-19virus diseasesGeneral Medicinebiochemical phenomena metabolism and nutritionVirus–host interactome ; COVID-19 ; Coronavirus infection ; Spike glycoproteinPhenotyperespiratory tract diseasescoronavirus infection; spike glycoprotein; virus-host interactome030104 developmental biologySettore MED/38 - PEDIATRIA GENERALE E SPECIALISTICA030220 oncology & carcinogenesisHost-Pathogen Interactionsbiology.proteinSpike glycoproteinCoronavirus InfectionsSignal TransductionJournal of Translational Medicine
researchProduct

Identification of novel drug resistance mechanisms by genomic and transcriptomic profiling of glioblastoma cells with mutation-activated EGFR.

2021

Abstract Aims Epidermal growth factor receptor (EGFR) is not only involved in carcinogenesis, but also in chemoresistance. We characterized U87.MGΔEGFR glioblastoma cells with constitutively active EGFR due to deletion at the ligand binding domain in terms of gene expression profiling and chromosomal aberrations. Wild-type U87.MG cells served as control. Materials and methods RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel drug resistance mechanisms related to expression of mutation activated EGFR. Chromosomal aberrations were characterized by multicolor fluorescence in situ hybridization (mFISH) and array comparative genomic hybridization (…

0301 basic medicineDown-RegulationBiologymedicine.disease_cause030226 pharmacology & pharmacyGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansGene Regulatory NetworksProtein Interaction MapsGeneral Pharmacology Toxicology and PharmaceuticsGeneTranscription factorMetaphaseChromosome AberrationsMutationmedicine.diagnostic_testBrain NeoplasmsGene Expression ProfilingGeneral MedicineGenomicsUp-RegulationGene expression profilingErbB ReceptorsGene Expression Regulation Neoplastic030104 developmental biologyDrug Resistance NeoplasmMutationCancer researchCarcinogenesisGlioblastomaTranscriptomeComparative genomic hybridizationFluorescence in situ hybridizationSignal TransductionLife sciences
researchProduct

Virus-host interactome: Putting the accent on how it changes

2017

[EN] Viral infections are extremely complex processes that could only be well understood by precisely characterizing the interaction networks between the virus and the host components. In recent years, much effort has gone in this directionwith the aimof unveiling themolecular basis of viral pathology. These networks are mostly formed by viral and host proteins, and are expected to be dynamic bothwith time and space (i.e., with the progression of infection, as well as with the virus and host genotypes; what we call plastodynamic). This largely overlooked spatio-temporal evolution urgently calls for a change both in the conceptual paradigms and experimental techniques used so far to characte…

0301 basic medicineEvolutionSystems biologyBiophysicsComplex diseaseDiseaseComputational biologyBiologyBioinformaticsBiochemistryInteractomeVirusViral Proteins03 medical and health sciencesSpatio-Temporal AnalysisProtein networkVirologyStress (linguistics)AnimalsHumansProtein Interaction MapsVirus host030102 biochemistry & molecular biologyHost (biology)030104 developmental biologyVirus DiseasesHost-Pathogen InteractionsSystems biologyJournal of Proteomics
researchProduct

iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins

2016

DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias lati…

0301 basic medicineExonucleaseSite-Specific DNA-Methyltransferase (Adenine-Specific)Embryo NonmammalianOryziasOryziasComputational biologyBiology03 medical and health scienceschemistry.chemical_compoundTechniques and ResourcesTranscriptional regulationDatabases GeneticProtein Interaction MappingTranscriptional regulationAnimalsEpigeneticsPromoter Regions GeneticMolecular BiologyTranscription factorGeneticsBinding SitesChromatin bindingComputational BiologyPromoterSequence Analysis DNADNA Methylationbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologychemistryGene Expression Regulation207Chromatin profilingbiology.proteinDamIDEpigeneticsTranscription factorDNAAlgorithmsDevelopmental BiologyProtein BindingTranscription FactorsDevelopment (Cambridge, England)
researchProduct